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Abstract. A hydrodynamic model has been used to study the magnetoplasmon modes 
on lateral surfaces of two coupled half-plane semiconductor superlattices. The numerical 
calculation result predicts that the coupled localised edge modes may be softened because 
of the coupling between two lateral surfaces. The new softened surface plasmon mode in 
two coupled half-bulks is obtained. Several special cases are also discussed. 

Recently, the collective excitations of low-dimensional electron gases have attracted 
much attention both theoretically and experimentally. A kind of edge magnetoplasmon 
mode that propagates along the boundary of the 2D electron fluid has been found [ 1-71. 
The frequency of this edge mode varies inversely with the magnetic field in the large- 
field limit. 

However, in [8] an analysis was reported of intra-sub-band surface plasmon modes 
on the lateral surface of a half-plane semiconductor superlattice; these were called the 
‘edge modes’ of such a system. The edge magnetoplasmon modes on a lateral surface of 
a half-plane superlattice with a complex unit cell and coupled edge magnetoplasmon 
modes in an electron fluid confined to a plane with a channel have been studied in [6,7]. 
These excitations are peculiar in that they are free of Landau damping and could prove 
of interest in the field of surface wave devices [9], in which the effect of interactions 
between two planes on the collective excitation modes is a very realistic problem. 

A hydrodynamic model will be used here to study the magnetoplasmon modes of 
two coupled half-plane superlattices. For simplicity, we use a model in which periodic 
arrays of 2~ electron layers are stacked along the z direction, and the electron layers are 
located in the spaces x < 0 (region 1) and x > a (region 2) of distance a apart and 
embedded in a semiconductor background of dielectric constant E,. The external mag- 
netic field is along the z direction perpendicular to the half-planes. 

The principal problem of interest is the self-consistent oscillation of a charge-com- 
pensated 2D electron gases with the layers situated at x < 0, and x > a ,  placed in a 
perpendicular magnetic field BZo. Consider a rigid positive background with charge 
density eno and a compressible electron fluid with number density no + n. Let nj(r, t )  
and Vj(r ,  t )  denote, respectively, the small fluctuation in the electron surface density 
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and the electron velocity field in the plane of thejth layer. These amplitudes satisfy the 
equation of continuity, Euler’s equations and Poisson’s equation: 

-iunl + no(du,,/dx + ikv,,) = 0 

-i,ulx + (s2/no)dn,/dx - (e/m*)dq/dx + w,uI) = O 

-i,uI). + iks2(n,/no)- ik(e/m”)q - U , U , ~  = O 

where q is the electrostatic potential and o, is the cyclotron frequency. 6’ is the step 
function, and s is an effective compressional wave speed. Here, since the system is 
translationally invariant along they direction, the solution may be taken as a plane wave 
of the form exp(iky - iwt), with amplitudes which depend on x and z.  It is convenient 
to consider kpositive, while o, can take either sign. A Fourier transform inx of equation 
(4) gives the ordinary differential equation 

where n,(k,) is the Fourier transform of n,(x)[O(-x) + 6(x - a)]. Its solution can be 
written as 

t x  

(6) 
2ne 

q ( k , ,  2) + - Z: n,(k,)k-’ exp(-k’lz - z , / )  = o 
E, , = - x  

where k‘ L- ( k 2  + k?)l l2 .  The inverse Fourier transform then gives a non-local integral 
relation between the electrostatic potential in the lth plane and the corresponding charge 
density 

q ( x ,  z l )  + 4ne 1 dx‘ L,(x - x’)n,(x’)[O(-x’) + 6(x’ - a)] = 0 

i 

(7) 
E, I = - “  

where 

L,(x) = dk, exp(ikrx)[(2k’)-’ exp(-k’lz! - z,I)]. (8) 

In principle, such an integral equation can be solved using the Wiener-Hopf technique 
[ 101. IJsing the usual Bloch condition 

n,(x’) = A@‘) exp(iq,jd) (9) 
we have 

where 

S(k , ,  k ,  4, )  = sinh(k’d)/[cosh(k‘d) - cos(q,d)] (loa) 

A ( k , )  = J dx’ exp( -ik,x’) A(x’) .  ( lob)  
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They are independent of the layer label. Combination of equations (7) and (10) yields 
the Fourier component of the exact kernel about equation (7): 

L(k,) = [2(kZ i- k 2 ) 1 ' 2 ] - 1 S ( k , ,  k ,  q2) .  (11) 

We introduce here the approximation method used in [5] which we think remains 
applicable and will be seen to work with equal ease [6,7], then we obtain 

L o ( k )  = kf(k  4z)/[2k2 f k k ( k  4211 (12) 

where 

Function g ( k ,  q2) characterises the screening correction for edge plasmons, and 
f ( k ,  qz) = S(k, = 0, k ,  qz). L(k,) and L,(k,) have the same first two terms in a power 
series about k: = 0. The inverse Fourier transform of equation (12) gives the approxi- 
mate kernel 

The problem can be reduced to a pair of effective localised Poisson's equations 

The remaining steps in the solution are identical with those in [6]. When equations (1)- 
(3), (15) and (16) are combined with the boundary conditions that Q) and a ~ ) / d x  are 
continuous and that U ,  vanishes there, together with the suitable boundary behaviour 
1x1 -+ CO, this procedure gives the dispersion relation 

D4w2{2(2/g)'/2 C ~inh[(2/g)'/~ka] + C2 ~inh[(2/g)l/~ka] + (2/g) sinh [(2g)'/2ka]} 

- 4(2/g) '/ 'D2 w i w2cf/g) { C cosh[ (2/g) 'I2 ka] 

+ (2/g) cosh[(2/g) ' I 2  ka]} + 40; cf/g){(2/g)w2 sinh[ (2/g) ' I 2  ka] 

- 0: ~inh[(2/g)'/~ka]} = 0 (17) 

where U; = 2nnoe2k/mY is the bulk 2D plasma frequency, and 

D 2  = 20$cf/g) + (U: - w ' )  

c2 = 2[(4cf /g> + (l/g) (d - 02>1/[2wicf/g> + (4 - 4 1 .  
(18) 

(19) 

An additional set of roots are given by w 2  = OJ: (spurious result of the approximation 
method) and w 2  = 2w$cf/g) + (corresponding to the bulk continuum when a -0) 
[61. 
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It is easy to find several well known special results. 

(i) When a -. 0 ,  we obtain from equation (17) 

w 2  = U: + 20 i (J /g )  (20) 
which corresponds to the bulk continuum. Ford  -. 0, equation (20) gives the dispersion 
relation for a three-dimensional electron gas (3DEG): 

0 2  = w f  + Q2’p + O(q2) (20a) 

where S2; = 4nn0e2 /~ ,m+d  is the 3~ plasma frequency. When d is finite, we let g = 2, 
corresponding to the exact result [l] and then obtain the dispersion relation referring to 
the superlattice: 

w 2  = w f  + coi sinh(kd)/[cosh(kd) - cos(q,d)]. 

w2 = of + oz. 

U +  = 21/2(2 + g)-’ sgn(w,) { [ ( 2  + g)fwl + 
w -  = -2112(2 + g1-l sgn(oc){[(2 + g)fw$ + g ~ ? ] ’ / ~  - g1/2/w,j) 

(20b) 

(20c) 

Furthermore, for d-. x ,  equation (20b) reduces to the dispersion relation of a 2DEG: 

(ii) When a -. x, we obtain from equation (17) for a finite value of d 

+ g’/2Jw,/} 
(21a) 

which is related to a half-plane superlattice. When d-+ 0, equation (21a) reduces to the 
dispersion relation of an EG in a half-bulk: 

w ,  = 2-l sgn(w,>{[2~2, + w t  + ~ ( q ~ ) ] ” ~  + Iw,l> 

w -  = - 2 - I  sgn(wc){[2Q2, + w f  + 0 ( q 2 ) ] 1 ’ 2  - lw,l}. 
(21b) 

If d-. a, on the contrary, equation (21a) reduces to the dispersion relation of an EG in 
a half-plane 

(iii) When a is finite, for d-+ x, equation (17) leads to the result corresponding to 
an EG in two coupled half-planes with a channel given in [6]. 

Equation (17) can be readily solved by the numerical method to give the desired 
edge plasmon dispersion relation and magnetic field dependence of the frequency of 
edge magnetoplasmons. In general, we have two branches of coupled modes, as shown 
in figure 1. (The other two band edges corresponding to q,d = n has not been shown for 
w, # 0. )  When w, = 0, there are two branches of modes due to coupling (a is finite). In 
the absence of a magnetic field, it should be pointed out that, for the strong screening 
kd 1, the frequency of the anomalous edge mode rapidly decreases when a becomes 
small; this is called the ‘softened’ plasmon mode and is very different from that given in 
[6]. The ‘softened’ plasmon mode can be attributed to the dramatic enhancement of 
complete Coulomb screening due to the strong coupling between different layers as a 
decreases. Under the presence of the magnetic field the symmetry with respect to the 
+y and -y  directions is broken, and then the spectrum of the edge plasmon mode 
will split. However, when there are two coupled half-plane superlattices, the possible 
combinations of the two directions are ( + y ,  + y ) ,  ( - y ,  - y ) ,  ( + y ,  - y )  and ( - y ,  +y ) .  Of 
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Figure 2. Dispersion relation of edge magneto- 
plasmon modes for coupled half-plane super- 
lattices. The parameters are as follows: w,/Qp = 
0; a/d = 2.0. 

Figure 1. The coupling strength dependence of 
the coupled edge mode in units of Qp for kd = 0.5 
and different external magnetic fields: -, no 
externalmagneticfield, w, = 0;---, o,/Q, = 0.4 
and q,d=O. The other two band edges cor- 
responding to q,d = A are not shown for the 
broken lines. 

I 
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Figure 3. Dispersion relation of edge magneto- 
plasmon modes for coupled half-plane super- 
lattices. The parameters are as follows: w,/Q, = 
0.4, a / d  = 2.0. 

these, ( + y ,  + y )  and ( - y ,  - y )  are equivalent, and so are ( + y ,  - y )  and ( - y ,  + y ) .  These 
two kinds of combination correspond to two modes of edge magnetoplasmons. The 
existence of a magnetic field reduces the softening of anomalous edge mode. Also, the 
tops and bottoms of the two branches are interchanged. 

From figure 2, we know that for a definite geometrical factor ratio a / d ,  if w, = 0, 
there are two branches of coupled modes, which overlap each other owing to coupling. 
The lower branch tends to zero as kd + 0 and so does the lower edge of the upper 
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U, 1% 1 / ka  

Figure 4. The magnetic field dependence of the 
edge magnetoplasmon modes in units of Qp 

for q,d = n, kd = 0.5 and different coupling 
strengths: --. a is infinite; ----. weak coupling, 
ka = 2.0. The other two band edges correspond- 
ing to q,d = n are not shown for the full and 
broken lines. 

Figure 5.  The coupling strength dependence of 
the coupled edge modes in two coupled half-bulks 
(d+ 0) in units of Qp for different external mag- 
neticfie1ds:-, noexternalmagnetic field, U, = 
0; ---, w,/Q, = 0.4. 

branch. The existence of a magnetic field raises the lower edge of upper branch in the 
strong screening region kd 1, as shown in figure 3. If the magnetic field is large enough, 
a gap will exist between two branches. As the magnetic field increases, so does the gap. 
Moreover, the top and bottom of the lower branch are interchanged. 

Figure 4 presents the magnetic field dependence of the edge magnetoplasmon modes 
for different coupling strengths (ka ) - ' .  When w, = 0, the existence of coupling leads to 
cancellation of the degeneracy of the magnetoplasmon mode. As the coupling strength 
increases, the splitting increases also. The normal edge mode increases with increasing 
magnetic field B as expected, while the anomalous edge mode intensity is proportional 
to B-' in the large-field limit. The other two band edges corresponding to q,d = x are 
not shown here. 

It is very interesting to study the following special case. If a is finite, for d- 0, the 
dispersion relation of the coupled surface modes of two half-bulks is given by 

4R4w2  sinh(ka) - 4 R 2 w 2 Q ;  cosh(ka) + Q,(w2 - w f )  sinh(ka) = 0 (22a)  

with 

R2 = Qi + (w2  - w f )  
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which is presented in figure 5. In this case, the screening becomes stronger, and the 
splitting of the two branches becomes smaller. The band width is zero in this case. From 
this we can predict the existence of new coupled surface modes in such a system. Similar 
totheresultinfigure 1, wheno, = 0, softeningoftheanomaloussurfacemodemayoccur. 
The enhancement of complete Coulomb screening weakens the interaction between 
electrons localised at two surfaces, so that the frequency of the anomalous surface 
mode is decreased. The existence of a magnetic field also reduces the softening of the 
anomalous surface mode. 

Although it is difficult to estimate the accuracy of the present approximation, an 
exact study of such a system, which needs considerable computation and will be given 
in a separate paper, can show that this approach provides a good qualitative fit to the 
field dependence of the anomalous edge modes if the magnetic field is not very large, 
and it also is reasonably good for the normal edge modes of zero-field values. The 
softened plasmon mode in two coupled half-plane superlattices and the softened surface 
mode in two coupled half-bulks are attractive ideas which have not previously been 
reported. Moreover, it leads us to another approach to obtain two coupled branches 
conveniently with adjustable separation between them by using coupled half-plane 
superlattice structure in the presence of a magnetic field, instead of using a complex 
unit-cell structure. 
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